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ABSTRACT

Let f(t) be defined in (0,1] by

0 if 0 <_t <_1

f(t) 3t-1 if 1 2

1 if -2<t<1
3 - -

and extended to all real t by requiring that f(t) should be an even function

having the period 2 (See Figure 1). The plane arc defined parametrically by the

equations

x(t) = I f(3
2nt) f32n+1 (0 < t < 1),

n=O 2 n=0 2 n+l
is known to be continuous, and to map the interval I = {0 < x < 1} onto the

2
entire square I = {0 < x,y < 1) (See [3]). Here it is shown that this arc is

nowhere differentiable, meaning the following: There is no value of t such

that both derivatives x' (t) and y' (t) exist and are finite.
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SIGNIFICANCE AND EXPLANATION

Well known are examples of area-filling curves, and of

continuous functions which are nowhere differentiable. This

paper brings together these two pathological properties by

showing that the area-filling curve described u,_4-flacks,at

every point a finite derivative.

Acceaioc For

iXDC TAS
Unanotunc ed

Justif ication

By__________

Distribution/

Availability Codes

Avail and/or
DIst special

' The responsibility for the wording and views expressed in this

descriptive summary lies with MRC, and not with the author of
this report.

!. , ."T



THE PEANO CURVE OF SCHOENBERG IS NOWHERE DIFFERENTIABLE

James Alsina
Middlebury College

1. Introduction. It came as quite a surprise to the mathematical world whet,

1875, Weierstrass constructed an everywhere continuous, nowhere differentiable function

SA (see [1]). Equally startling though was the discovery by Giuseppe Peano 12] fifteen

years thereafter that the unit interval could be mapped continuously onto the entire

2
unit square I

Well known now are examples of area-filling curves, and of continuous functions

which are nowhere differentiable. This paper brings together these two pathological

properties by showing that the plane Peano curve of I. .T. Schoenberg [3], defined in

53 below, lacks at every point a finite derivative (Theorem 3). An analogous spaze

3curve is similarly shown to fill the unit cube I (Theorem 2), and to be nowhere

L differentiable (Theorem 4).

2. An identity on the Cantor Set r. The foundation of Schoenberg's curve is

the continuous function f(t), defined first in 10,1] by

1
0, if 0 < t 3

1 2
(2.1) f(t) = 3t-, if - t 1

SI, if < t<1.
3- -

We then extend its definition to all real t such that f(t) is an even function of

period 2 (See Figure 1 below). Thus

f(-t) = f(t), f(t+2) = f(t) for all t

*Figure 1

6The author would like to thank Professor Schoenberg for his invaluable suggestions on
the preparation of this paper.

Sponsored by tne Unizea states Army unaer Contract No. DAAG29-75-C-0024.



The main property of this function is that it produces the following remarkable iieUt*:

on 7.

Lemma 1. If t is an element of Cantor's Set , then

(2.2) t = 2f(3 nt)
n=O 3 

n +l

Proof: If indeed t . , it can be expressed as

- an
(2.3) t = n n (an = 0,2)

n=0 3 l n

then (2.2) would follow from the relations

(2.4) a = 2 • f(3nt) , (n = 0,1,2,...).n

To prove (2.4) observe that (2.3) implies
a a a a

n n 0 n-_l n+l
3 3 n 3 32

whence
a an+

(2.5) 3n=M n
n + 2 

+  
(M is an even integer).

n 3 3 2 n

From the graph of f(t) we conclude the following:

If a n = 0, then M < 3nt -_M +- + + ... =M +1
n n- -n 32 33 +n + 3n -

and therefore f(3 nt) = 0 .

2 n 2 2 n
If a = 2, then M + 3 + + -+ ... = M + 1 and so f(3 t) = 1.

n n 3- -n 3 2+ n

This establishes (2.4) and thus the relation (2.2).

3. Schoenberg's curve. This function is defined parametrically by the equations
(3.1) x(t) = 1 f(32nt),

n=0 2 n+l

(3.2) y(t) = z 1 f(
2
n+lt) , (0 < t < 1).

n=0 2 n+1

The mapping t - (x(t),y(t)) indeed defines a curve: its continuity follows from the

expansions (3.1), (3.2) being not only termwise continuous, but dominated by the series

of constants

(3.3) 1
n=l 2 n+l

These conditions insure their uniform convergence, and therefore also the continuity of

their sums.

-2-
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NOW if t ,

(3.4) t (a J,2)' n-l n
n=,

by (2.4) we may writ( (3.1) and (3.2) as

1 a 2n ' 1 a2n+l
(3.5) t+) I n 2

- n=O 2

We then invert trihst relationships: le-t P = (x(t) ,y (t) be an arbitraril'y preasig:!ne
'

point of the square I x 1-, and regard (3.5) as the binary expansions

the coordinates of P Thi ; dcfincs a2n and a2n+l, and therefore also the full

sequence a . Witi it we define t ( ) by (3.4), and thus the expressions

L being a consequence of (3.1) and (3.2), show that the point P is on our curve. This

proves

Theorem 1. The mapping

t , (x(t), y(t))

2 2
from I into I defined by (3.1), (3.2), is continuous, and covers the square I

even if t is restricted to the Cantor Set :.

This result extends naturally to higher dimensions. We discuss only the case of

the space curve

(3.6) X(t) = f t)
n=O 2

n+

1 3+

(3.7) Y(t) = - f(3 ,

n+ 1t
n=O 2

(3.8) Z(t) = 1 _ _ f x nl) ( )
n=O 2

n~

The continuity of X(t), Y(t), and Z(t), as in the two-dimensional case, isguaranteed

by the continuity of each of their terms and by the convergence of the series of con-

stants (3.3). If we define t by (3.4), so a = 0,2 for n = 0,1,2,... , then againn

(2.4) shows that
a a a

(3.9) X(t) 1 3n - 1 3n+1 1 3n+2
n+l 2' Z(t) n.1 3n2

(39) X~) n=O 2
n - 

"-- n=0 2
n+- i 

"2 n=O 2
n -  

'

If the right sides are the binary expansions of the coordinates of an arbitrarily chosen

3 3point of I , then this point of I is reached by our space curve for the value of

t defined by (3.4). Thus we have proven

-3-
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Theorem 2. The mapping

t 3 (X(t), Y(t), Z(t))

from I into 13 defined by (3.6), (3.7), (3.8), is continuous, and fills the cube I

even if t is restricted to the Cantor Set r.

Theorems 1 and 2 raise an interesting question. Just how does the plane curve, for

example, fill the square as t varies from 0 to 1 ? Though by no means may this

question be answered completely, we can gain sume feeling for the curve's path by viewing

it as the point-for-point limit of the sequence of continuous mappings.

(3.10) t (xk(t), yk(t)), (k = 0,1,2,...),

where xk and yk are the kt- partial sums of the series (3.1) and (3.2) defining

x and y . The graph of this sequence for k = 0,1,2 and 0 < t < 1 is shown below

in Figure 2. (The origin is at the lower left corners, with xk and yk on the

horizontal and vertical axes, respectively. The dotted lines delineate the boundary of

2

.c ............. ....... . .... o.. o...... ......... ,.... .... ,,.... ......... .. °.......... .... ,o...... ...

Fisue 2. The approximation Curves (Xk(t),yk(t)) for k = 0,1,2.

-4-
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Notice in particular in Figure 2 that the curves lack the one-to-one property: fyo:

k = 1,2. This fact, together with the promise for increased complexity in the.e

approximation curves as k - , suggests that the limit curve itself may be man:'-t3--.

The implication is indeed correct, and not only for the case at hand. If an .<

filling curve were one-to-one, it would be ahomeomorphism. The unit interval anri

(for n > 2), however, are not homeomorphic, since the removal of any interior ,oint

n
disconnects I but not I

The point (1,2) of 12 nicely illustrates this many-to-one property for

Schoenberg's curve (3.1), (3.2). Since the number 1 can be expressed in binary fr!

either as .1000... or .0111..., (3.4) and (3.5) imply that (x(t0 )Y(t)) = , )

the image of four distinct elements of the Cantor Set ?, namely

1 11 25 8 *
t = - 6 ' 9

In fact, the set of all (x,y) with four pre-images in r is dense in the square.

Theorem 1 asserted that r, a set of Lebesgue measure zero, is sufficiently large tc bc
2

mapped onto I , a set of plane measure 1 . It would now seem that has more points

2
than I 2

In the next section, we explore yet another property of Schoenberg's curve, and

prove our main result.

4. The Peano curve of Schoenberg is nowhere differentiable. We say that a plane

curve (x(t),y(t)) is differentiable at t- if both derivatives x(t ) and y'(t,)

exist and are finite. our goal will be to prove

Theorem 3. For no value of t do both functions

(4.1) x(t) = f(3 nt),

n=O 2 
n+

(4.2) y(t) = 1 f(32nit)
n-0 2 n+l

have finite derivatives x'(t), y'(t).

More precisely, 1jj) is a quintuple point of the curve, having its fifth pre-
image, t , in [0,1]\r.

-5-
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Since f(t) is an even function of period two, then so are x(t) and y(t). Thus; i"

suffices to prove Theorem 3 for t I = [0,11. The theorem will follow from th 1rr >*

of two lemmas.

Let t be a fixed number in [0,1], expressed in ternary form by
a0  aI  an

(4.3) t = n (a
3 32 3n+..........n

and corresponding to this t , define the following disjoint sets:

No  = n: a2n 0 ,

N1 = In: a2n = ,

N2  in: a =2 .

The first of our lemmas is

Lemma 2. x' (t) does not exist finitely if NO  N2  is an infinite set.

In the proof we make use of several properties of the function f(t):

(4.4) f(t+2) = f(t) for all t .

If M is an integer and t I  [M,M + l], t 2  [M + -, M + 1], then

(4.5) If(t1 ) - f(t2)1 = 1 .

f(t) also satisfies the Lipschitz condition

(4.6) Jf(t I) - f(t2) )1 _ 3 It-t22 for any tl,t 2

Let us now assume that m N 0 N2, hence a2m = 0 or a2m 2. For such m ,we

define the increment

S2-m

9,! if a =0,
(4.7) = 2mK -M , if a = 2

and seek to estimate the corresponding difference quotient

x(t + 6 X(t)
(4.8) m 1 x t)

m n=0 2- n,m

where

f(9 n (t + M)) - f(9 nt)(4.9) "n = $

m

,a.
-6-
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Wt must distinguiL;'. three cases.

(i) n m. B: (4.7), = i i an n
. 

i:.t(g .

we conclude that

(4 .1 ) = if . mnBm

regardl-ss of th. vali( of s

(ii) n m . fere wew make,' u i, ,f t Li: cn!, z ino,:ualit: (4 ) ton .ow that

m.

nm -3 m

whence

(4.11) .,n for n m
nm' -

(iii) n = m. By (4.3), w, see that
m 'm a2m m1

(4.12) ;) t  = 3 mt . , + £ l
(4.12) = 3 m " + + (: is in inte qr)

Here we must dis tingui:h tw j subca:;t:

Ifa.m an]s y(.)'m Z (4.12) implies that M~ ' NIf am = I' , and 50 b'y (4.7) ) m

2 2 1 1
3inc v 4 4 . . w, wefind that " t • : and

3 3 3 --
therefore that M + =. 9mt + im m- +3 -- m -

m - 2 m
If a 2  2, then b, (4.7) -)m - . .rom (4.12), M + - 9 mt _ + - +

2 m 3
2 + M. = 1 , while 'I 9 t - .

3
2  -- m

In either ,u;case, we can apply (4.5) to conclude that

(4.13) .,=m L.. = I m
m,m .M

regardless of the- value of a~m

The results (4.10), (4.11), and (4.13) hold under the sole assumption

m N, N

Applying them to the difference quotient

x(t + ) - x(t)
(4.14) m

m

we find by (4.H) that

-7-
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-0~ 2-

n=r) 2 nl n-

> 1 Yr m

- nim-
112 m n=O 2

rn-i

- 2m+l 2 n= n+l

3 9 m 1 3 9m

47 7 2 -7 2 ) ]

and finally
Sx(t+6 )- x(t) m

(4.15) - > 9~ 92)n m N3
6 - (282) + - if m c No N 2

This establishes Lemma 2 if, in (4.15), we let m * through the elements of the

infinite sequence N 0u N2 .

We now turn out attention to the digits of t having odd subscripts, and define

the sets

N; = (n: a2n+l = 01

NI = {n: a2n+l = 1}

N1 = {n: a2n+l = 2}

Now if
a0  a1  a2n+l

33 2 32n+2

then for T = 3t we find

a1  a2n+1
T = a T ... +

0 +3 + 3 2n+l

At the same time

X() T) = I M 2nTnf(3 = y(t) .
n=0 2 n-0 2 n

'

Applying Lemma 2 to x(t) at the point T = 3t, we see that the digits a2n+1 are th(

digits of t having even subscripts. We thus obtain

Corollary 1. y,(t) does not exist finitely if N; u N2 is an infinite set.

--

47
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By Lemma 2 and Corollary 1 we can conclude that the only t for which x' (t a:"

y' (t) might both exist and be finite, is one whose sets No  N, and ' arc
0 2 2

finite. This is the case if and only if the digits

(4.16) a = 1 for all sufficiently large n
n

On the other hand, to prove the non-differentiabilit', of the mapping (x(t)

it suffices to show that one of the derivatives x'(t), y'(t) fails to exist.

Lemma 3. If t is such that (4.16) holds, then x' (t) does not exist fi:nitelv.

The simplest t satisfying (4.16) is the one for which all a = 1 , or
n

n=O 3

We must, however, treat the general case, where

(4.17) a al a 2m- 1  1 1
3 3 23 2 3 .3

with a = 0,1,2 for n =0,1,...,2m-l. To prove the lemma, we proceed as in Lemnma
n

by estimating the difference quotient

x(t + 6 ) - x(t)

(4.18) m = 1
m n nn=m 2

where f(9
n ( t 

, 6))- f( 9 nt)

m
(4.19) Yn,m = 6

m

Here, though, we must abandon our former choice for the increment . in favor ofm
2 9-m

(4.20) 6 =2 -
S9

We will once again examine the quantity yn,m in terms of three cases:

(i)n m. Frm (.2) n6 2 9n-in
(i) n > m. From (4.20), 9 6 = - , which is an even integer. Thus, b7

m 9

property (4.4), the periodicity of f(t), we see that

(4.21) Yn, = 0 if n > m .

(ii) n < m. In this case, we again use the Lipschitz condition (4.6) to conclude

that

(4.22) 'yn,mI < 3 • 9n if n < m

(iii) n = m. By (4.17),
m 2m 1 1

9 = 32mt = M +1 + - + . , (M is an integer),

3 232

whence

(4.23) 9m M +

-9-
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whilIe

(4.24) 9~
*~n 9

From the graph of f(t), in Figure 3 below, observe that

(4.25) f(N + :)=f( 2)= , for any integer N

and so from (4.23),

(4.26) f(9 ~ In t)

The addition of (4.23) and (4.24) gives

9int+ 9 m, = + 13

2 13

and since -<-< 1, Figure 3 shows us that
3 18

(427 f9 t+ M 0 ,if M is odd

m 1I if M is even.

q~qN

i44.GL.

T-ligure 3

Regardless of the value of M ,(4.26) and (4.27) imply that

jf9mt+ 9 m 6 ) - f(9 m 0 1

and therefore, by (4.19) and (4.20), that

(4.28) lvm' I T6i 9 m
mmi

Ai 4



Applying t'ie results (4. -:), (4. 2-), an~i (4.>)- tr: -,v d;iffcrenoc quiotic-nt 4.

X(t x - (t)
DQ M1

m 'n= -l7 n,m

17

'm1m1 '- 1.1

7 1 ,

- + ,T1 4~ ~ n+l nr

ni,

which yields

(4.29) ( m

If, in (4. 29) , we 1.tm m ,hence x is not differentiable at t .. i

establishes Lemma 3, and therefore also Theorem 3.

-While Lemma Iabove is sufficient tT) prOvW the nondifferenti-bililt- of *tife npin

(4.30) t -(x(t),y(t))

for t defined by (4.17), y'(t) as well may be shown not to exist for such t

This claim is easily verified by the same argument which produced Corollary 1.

5. The generalization of Theorem 3. Analogous to Schoenberg's plane Peano curve

(4.1), (4.2) is the space curve

(5.1) 1~t M 3n t

n=0 n2l t

(5.2) Y(t) 1 f3ntl

n=0 2nlf3 t

Z~t)= y 1 3n+2
(5.3) f(3 - t), (0 _t_1)

n=0 2

introduced in 53. By way of Theorem 2, we saw that these functions define a Peano curve

3
filling the unit cube I H Iere, in a similar fashion, we seek to extend Theorem 3 to

higher dimensions.

AbL 1-1--



Theorem 4. The Peano curve defined by (5.1), (5.2), (5.3) above is ncwhere

differentiable.

The technique of proof used for Theorem 3 will apply nicely; again we shall have

two lemmas and a corollary.

Indeed, with t defined by
a0  a1 an

t + +... + 3 + ... (a 0,1,2),
3 3 2 3 n+l n

we define the corresponding sets of integers
S

M0 = {n: a= 01, M = {n: a3 = 1 , M = {n: a = 21

0 3n 1n 2 3n

and state

Lemma 4. The derivative X (t) does not exist finitely if M0 u M2  is an

infinite set.

For m c M0 u M2 , we define the increment

2 3-3m

2 3 if a3m =0

-3m i-j 3  
, if a3m ,

and investigate the difference quotient

x(t + 6) - x(t)
DQmn=0 

2 n+l n,m

where f(3n (t + 6 )) - f(33n t)

mYn,m 
6

Proceeding as in the proof of Lemna 2, we find that

ID111 i( ) ,
4 2 25 2 1

which proves Leimna 4, if we let m - = through the elements of M 0 u M2 .

Using the identities Y(t) - X(3t), Z(t) - X(3 2t), we obtain the following:

Corollary 2. (i) If the sets M0 - a = 01, ' -n: a - 2} are such

that M0 U M' is an infinite set, then Y' (t) does not exist finitely. (ii) If the
0 2

sets M" (n: an W M 019 {n, a 2) are such that M" u M" is an infinite
ses 0=(l 3n+2 2 {l 3n+20 2

set, then Z'(t) does not exist finitely.

-12-
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The only t for which all the derivatives X'(t), Y'(t), Z'(t) might still exist is

one whose sets
- 4

Mo M M'
0~2' M; L M2 , Ms. 2'

are all finite. This condition is true if and only if

(5.4) a = 1 for all sufficiently large nn

We now state o'r final

Lemma 5. Suppose t satisfies (5.4). Then none of the derivatives X(t),

Y (t), Z (t) exists and is finite.

The proof of the claim for X (t) follows from the choice of

6 2 3-3m
m 9

and those for Y' (t) and Z (t) from arguments similar to the proof of Corollary 1

in 94.

6. A final remark. *Ir its nowherV djffejrentja~i; ty, Shoenperqls plane, cjr~ve

provides an interesting contrast to the Peano curve from which it is derived, that of

H. Lebesgue (see [3]).

2Under Lebesgue's mapping L(t), each (xy 0) of I , expressed as

a0 '2 4

Oi 1 3 a5 a O')

YO= - + - + - + .. u ,)
YO 2 2 2 3

is the image of a point t in Cantor's Set r of the form

2o0  2aI  2a2

0 2 ' 33

This correspondence we now recognize as a restatement of the relations (3.5). As such,

L(t) coincides with Schoenberg's curve on r , and thus must lack a finite derivative

there.

Lebesgue then extends the domain of L(t) to all of [0,1] by means of linear

interpolation over each of the open intervals which comprise the complement of r

j Defined in this manner, L(t) must indeed be differentiable on [O,l]\, and hence

constitutes an example of a Peano curve which, unlike Schoenberg's, is differentiable

almost everywhere.

-13-
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